Mars może wpływać na ziemskie oceany

Mimo liczonej w dziesiątkach, a nawet setkach milionów kilometrów odległości od Ziemi, Mars może wpływać na kształt orbity Ziemi, a co za tym idzie, na głębiny ziemskich oceanów – informuje pismo „Nature Communications”.

Grawitacyjne odziaływanie czerwonej planety zmienia prądy głębinowe

.Mars jest najbliższą Ziemi planetą zewnętrzną (taką, której orbita położona jest na zewnątrz ziemskiej orbity). Jego odległość od Ziemi zmienia się w zakresie od 56 do 400 mln km.

Wydawałoby się, że w porównaniu z wpływem Księżyca grawitacyjne oddziaływanie Marsa jest zaniedbywalnie małe. Jak jednak wykazała główna autorka badań, dr Adriana Dutkiewicz z University of Sydney, wykonane przez naukowców z Uniwersytetu Paryskiego (Sorbony) oraz University of Sydney analizy setek próbek osadów pobranych z oceanicznych głębin w ciągu ostatniego półwiecza sugerują istotny wpływ tej planety. Pochodzące z różnych lokalizacji próbki pozwoliły przyjrzeć się przeszłości Ziemi na dziesiątki milionów lat wstecz i lepiej zrozumieć siłę głębokich prądów oceanicznych. Tymczasem dostępne dane satelitarne sięgają w przeszłość tylko na kilkadziesiąt lat.

Jak się okazało, prądy głębinowe osłabiały się i wzmacniały w liczących 2,4 miliona lat cyklach klimatycznych. Autorzy badań uważają, że istnienie tych cykli można wytłumaczyć tylko w jeden sposób: są powiązane z cyklami interakcji, które mają Mars i Ziemia, gdy krążą wokół Słońca.

Obie planety wzajemnie wpływają na siebie grawitacyjnie. Ta interakcja zmienia kształt ich orbit, wpływając na to, jak bardzo są one okrągłe i na odległość od Słońca.

Jak wykazali autorzy (https://www.nature.com/articles/s41467-024-46171-5), dla Ziemi interakcja z Marsem oznacza okresy większej dostępności energii słonecznej – co oznacza cieplejszy klimat – a te cieplejsze okresy korelują z silniejszymi prądami oceanicznymi. Tworzą się gigantyczne wiry, które mogą dotrzeć do dna oceanów, powodując erozję dna morskiego i duże nagromadzenia osadów, nieco przypominające zaspy śnieżne.

Mars i jego naturalne cykle klimatyczne

.Udało się zmapować te silne wiry dzięki „pęknięciom” w analizowanych rdzeniach osadów. W spokojnych warunkach osady głębinowe tworzą ciągłe warstwy, ale silne prądy oceaniczne zakłócają ten proces, pozostawiając widoczny ślad.

Jak podkreślają autorzy, chociaż naturalne cykle klimatyczne, które ma Mars liczące 2,4 miliona lat wpływają na ocieplenie i prądy oceaniczne na Ziemi, nie są powiązane z szybkim wzrostem temperatur, jakiego doświadcza dzisiaj świat, w miarę jak ludzie w dalszym ciągu spalają paliwa kopalne ogrzewające planetę.

Naukowcy nie wykluczają, że głębinowe wiry mogłyby w pewnym stopniu złagodzić skutki potencjalnego załamania się Atlantyckiej Południkowej Cyrkulacji Wymiennej (AMOC), która przenosząc ciepło z tropików stabilizuje klimat na całej północnej półkuli, a której jednym ze składników jest Golfsztrom. Istnieją obawy, że AMOC jest na drodze do zaniku, ponieważ globalne ocieplenie podgrzewa oceany i topi lód. Takie załamanie miałoby katastrofalne skutki klimatyczne, w tym gwałtowny spadek temperatur w niektórych miejscach i wzrost w innych oraz to, że bogate w tlen wody powierzchniowe nie mieszałyby się z wodami głębszymi, prowadząc do stagnacji oceanu i wymierania organizmów żywych.

Być może przynajmniej w pewnej mierze pomogłyby środowisku inne procesy mieszania oceanu, takie jak intensywniejsze wiry głębinowe.

Obserwacje satelitarne wykazały, że wiry te stały się bardziej aktywne w ciągu ostatnich dziesięcioleci.

Nie jest jasne, jak bardzo różne procesy wpływają na prądy głębinowe, jednak autorzy mają nadzieję, że dzięki ich pracom uda się udoskonalić istniejące modele klimatyczne.

Nasze życie powstało za sprawą gwiazd

.Piotr KOŁACZEK-SZYMAŃSKI, doktorant astronomii na Wydziale Fizyki i Astronomii Uniwersytetu Wrocławskiego pisze na łamach Wszystko co Najważniejsze proces ewolucji życia tych fantastycznych obiektów współcześnie ma status osobnej, niezwykle skomplikowanej teorii. Warianty i potencjalne ścieżki życia gwiazd są niezwykle zróżnicowane, chociaż przebiegają według znanego nam schematu: narodziny, rozwój i śmierć. Gwiazdy różnią się masą, składem chemicznym i wiekiem. Wszechświat składa się z milionów gazowych kul, od najmniejszych, posiadających zaledwie 8 proc. masy Słońca, po giganty sięgające nawet jej 100-krotności.

„Kluczowe w procesie narodzin gwiazdy są mgławice. Jest to obłok pyłu i gazu, w którym dochodzi do formowania się gwiazd. We wczesnych fazach gaz pozostaje praktycznie niewzbudzony i zauważalny jedynie w podczerwieni. Gwiazdy dzięki kolapsowi grawitacyjnemu narodziły się z materii i powoli ją rozdmuchują, emitując specyficzną formę wiatru. Tracą materię, która odsuwa od nich gaz” – opisuje autor.

Przykładowo Mgławica M16 w gwiazdozbiorze Orła ma pyłowe kolumny („kolumny stworzenia”), które są miejscem powstawania gwiazd. Możemy wykonywać zdjęcia najdrobniejszych szczegółów takich mgławic i w skali roku obserwować zmiany, które w niej zachodzą. Najczęściej obrazy takiego procesu obserwujemy w świetle widzialnym, jednak astronomowie mają do badania znacznie większą paletę promieniowania elektromagnetycznego. Jednym z odcieni tej palety jest podczerwień. Za jej sprawą możemy przeniknąć przez wszystkie struktury pyłowe, co pozwala nam na dokładniejsze obserwowanie obszarów narodzin gwiazd.

„W fazie typu T Tauri początkowo materia krąży po orbicie nowo narodzonej gwiazdy. Silne pole magnetyczne prowadzi do spadania materii na powierzchnię gwiazdy, co powoduje emisję bardzo silnego promieniowania rentgenowskiego. Taka gwiazda nie byłaby przyjazna dla planet, które znalazłyby się zbyt blisko” – pisze Piotr KOŁACZEK-SZYMAŃSKI.

W skolei w jądrze gwiazdy promieniowanie jest ekstremalnie energetyczne i charakteryzuje się bardzo silnym natężeniem. W pewnym momencie życia gwiazdy okazuje się, że samo świecenie nie wystarcza na transport energii z jądra w kierunku jej powierzchni. Na tym etapie pojawia się konwekcja. Możemy wyobrazić sobie to na przykładzie. Podgrzewając garnek z wodą, możemy zaobserwować komórki konwekcyjne – bąble, które nieustannie mieszają się ze sobą. Gdyby konwekcja nie następowała, dno garnka by się przypaliło, bo samo przewodnictwo ciepła nie dałoby rady odprowadzić energii.

„Konwekcja występuje także w gwieździe. Samo przewodnictwo za pośrednictwem promieniowania nie jest w stanie przemieszczać ogromnej energii, której dostarczają reakcje termojądrowe. Gaz zaczyna wykonywać ruchy okrężne. Na dole jest gorętszy, wznosi się, oddając swoją energię na powierzchni gwiazdy, a następnie ochłodzony opada. Gwiazda posiada więc dwie wyraźne warstwy: promienistą, gdzie zachodzą produkcja i przenoszenie energii, a także konwektywną” – dodaje ekspert.

Nie wszystkie gwiazdy zbudowane są tak samo. Mała gwiazda, posiadająca masę mniejszą niż połowa masy Słońca, jest w pełni konwektywna. Znacznie przedłuża to jej życie, ponieważ dostarcza ona sobie nowego paliwa w postaci wodoru. W gwiazdach masywniejszych niż półtorej masy Słońca tendencje się odwracają. Ilość energii generowanej w jądrze jest tak duża, że nawet promieniowanie nie daje rady z jej wyprowadzaniem. Wówczas to jądro jest konwektywne, a otoczka jest promienista.

PAP/WszystkocoNajważniejsze/MB

Materiał chroniony prawem autorskim. Dalsze rozpowszechnianie wyłącznie za zgodą wydawcy. 14 marca 2024