Składnik życia znaleziony na obrzeżach Drogi Mlecznej

Składnik życia

W molekularnym obłoku na krańcach Drogi Mlecznej astronomowie dostrzegli – składnik życia – fosfor. Zmienia to spojrzenie na to, jak pierwiastek ten powstaje w kosmosie i rozszerza obszar potencjalnego występowania życia.

Składnik życia na obrzeżach Drogi Mlecznej

.Korzystając z radioteleskopów, naukowcy z University of Arizona (USA), w oddalonej o 74 tys. lat świetlnych molekularnej chmurze, znaleźli jeden z podstawowych budulców życia – fosfor, w postaci tlenku i azotku.

Według dotychczasowych założeń pierwiastek ten miał być produkowany w czasie jądrowej fuzji, zachodzącej we wnętrzach bardzo masywnych gwiazd, które, jak się uważa, nie występują w zewnętrznych rejonach Drogi Mlecznej. Po prostu materia w tych rejonach jest zbyt rzadka, aby takie gwiazdy mogły się narodzić.

Inne składniki życia, takie jak węgiel, tlen, azot – mogą powstawać w mniej masywnych gwiazdach, które występują znacznie powszechniej. Pod koniec swojego istnienia nieduże gwiazdy łagodnie wyrzucają swoją materię w otaczającą je przestrzeń.

„Jednak aby powstał fosfor, potrzebne jest gwałtowne zdarzenie. Uważa się, że produkowany jest on w wybuchach supernowych, a do tego potrzebne są gwiazdy o masie co najmniej 20 Słońc” – wyjaśnia prof. Lucy Ziurys, współautorka badania opisanego w periodyku „Nature”.

„Innymi słowy, jeśli ma powstać życie, potrzebne są supernowe, jeśli rzeczywiście są one jedynym źródłem fosforu” – dodaje.

Fosfor w przestrzeni kosmicznej

.Odkrycie fosforu na obrzeżach galaktyki, gdzie brakuje dużych gwiazd, świadczy więc o innych drogach do powstania fosforu.

Teoretycznie do zewnętrznych części Drogi Mlecznej fosfor mógłby być transportowany z wewnętrznych rejonów, w tzw. galaktycznych fontannach, które, jak niektórzy uważają, mają unosić się wysoko nad płaszczyznę galaktyki i powracają do jej dysku.

Jednak istnieje niewiele dowodów potwierdzających istnienie takich fontann, a nawet jeśli istnieją, to raczej nie sięgałyby aż tak daleko.

Nawet jeśli by tak się działo, to – zdaniem naukowców – minęło zbyt mało czasu, aby fosfor zdążył dotrzeć do zewnętrznych regionów galaktyki i utworzyć cząsteczki, które udało się zaobserwować.

Badacze zaproponowali więc inny mechanizm. Ich zdaniem w mniejszych gwiazdach pod koniec ich życia mogą powstawać duże ilości neutronów, które dołączają się do jąder krzemu, co prowadzi właśnie do powstania fosforu.

„Ten przewidywany teoretycznie mechanizm mógłby stanowić źródło fosforu, obok supernowych. Myślę, że mamy na to dobre dowody” – mówi prof. Ziurys.

Odkrycie ma podstawowe znaczenie dla poszukiwań podobnych do Ziemi planet, na których mogłoby rozwinąć się życie, gdyż znacząco rozszerza obszar, gdzie takie globy, zawierające wszystkie niezbędne pierwiastki, mogą istnieć.

„Egzoplanety w zewnętrznych częściach galaktyki nie były w pełni brane pod uwagę w poszukiwaniach życia – właśnie ze względu na zakładany brak fosforu. Mamy nadzieję, że jego wykrycie na obrzeżach galaktyki będzie bodźcem do badań dalekich egzoplanet” – mówi współautorka odkrycia, Katherine Gold.

Naukowcy chcą teraz przeskanować inne molekularne chmury w poszukiwaniu tego niezbędnego dla rozwoju życia pierwiastka.

Narodziny gwiazdy

.Astronom, Piotr KOŁACZEK-SZYMAŃSKI, na łamach „Wszystko co Najważniejsze” zaznacza, że: „Kluczowe w procesie narodzin gwiazdy są mgławice. Jest to obłok pyłu i gazu, w którym dochodzi do formowania się gwiazd. We wczesnych fazach gaz pozostaje praktycznie niewzbudzony i zauważalny jedynie w podczerwieni. Gwiazdy dzięki kolapsowi grawitacyjnemu narodziły się z materii i powoli ją rozdmuchują, emitując specyficzną formę wiatru. Tracą materię, która odsuwa od nich gaz”.

„Mgławica M16 w gwiazdozbiorze Orła ma pyłowe kolumny („kolumny stworzenia”), które są miejscem powstawania gwiazd. Możemy wykonywać zdjęcia najdrobniejszych szczegółów takich mgławic i w skali roku obserwować zmiany, które w niej zachodzą. Najczęściej obrazy takiego procesu obserwujemy w świetle widzialnym, jednak astronomowie mają do badania znacznie większą paletę promieniowania elektromagnetycznego. Jednym z odcieni tej palety jest podczerwień. Za jej sprawą możemy przeniknąć przez wszystkie struktury pyłowe, co pozwala nam na dokładniejsze obserwowanie obszarów narodzin gwiazd. W fazie typu T Tauri początkowo materia krąży po orbicie nowo narodzonej gwiazdy. Silne pole magnetyczne prowadzi do spadania materii na powierzchnię gwiazdy, co powoduje emisję bardzo silnego promieniowania rentgenowskiego. Taka gwiazda nie byłaby przyjazna dla planet, które znalazłyby się zbyt blisko” – pisze Piotr KOŁACZEK-SZYMAŃSKI w tekście „Z gwiazd powstaliśmy, w gwiazdy się obrócimy„.

PAP/Marek Matacz/WszystkocoNajważniejsze/eg

Materiał chroniony prawem autorskim. Dalsze rozpowszechnianie wyłącznie za zgodą wydawcy. 8 grudnia 2023