Jowisz pod lupą astronomów

Jowisz pod lupą astronomów

Działający w Very Large Telescope, instrument ESPRESSO przeznaczony do badań planet pozasłonecznych pozwolił na dokładną analizę wiatrów na największej planecie Układu Słonecznego i zbadał Jowisz. W następnej kolejności mają zostać zbadane inne gazowe olbrzymy naszego systemu.

Jowisz zbadany przez astronomów

.Astronomowie odkryli już ponad 5 tys. potwierdzonych planet pozasłonecznych. Jak zwracają uwagę naukowcy z Uniwersytetu w Lizbonie, w pierwszej kolejności odkrywano gazowe olbrzymy, z jednej strony – podobne, a z drugiej bardzo różne od Jowisza czy Saturna.

Dzięki nowym instrumentom udaje się już analizować atmosfery odległych, pozasłonecznych globów. Tymczasem na odpowiedzi czeka wiele pytań dotyczących atmosfer planet Układu Słonecznego. Teraz, po raz pierwszy w historii, badacze z Lizbony użyli instrumentu ESPRESSO do badania atmosfery Jowisza. Instrument ten jest spektrografem, działającym przy Very Large Telescope (VLT, Bardzo Dużym Teleskopie), należącym do Europejskiego Obserwatorium Południowego.

Urządzenie pozwoliło na pomiary prędkości wiatru na Jowiszu przez analizę zależnego od tej prędkości odbicia światła Słońca. Wykorzystane w tym celu tzw. efekt Dopplera. Wcześniej metodę tę, w połączeniu z innymi spektrografami, naukowcy wykorzystali do obserwacji Wenus.

„Atmosfera Jowisza, na poziomie widocznych z Ziemi chmur, zawiera amoniak, wodorosiarczek amonu i wodę, które tworzą charakterystyczne, czerwone pasy” – wyjaśnia Pedro Machado, autor publikacji, która ukazała się w magazynie „Universe”.

„Górne warstwy chmur znajdujące się w strefie ciśnienia od 0,6 do 0,9 bar składają się z zamrożonego amoniaku. Chmury wodne tworzą się natomiast w najgęstszych, najniższych warstwach i mają największy wpływ na dynamikę atmosfery” – dodaje.

Szczegóły przeprowadzonych badań

.Dzięki ESPRESSO badacze dokonali precyzyjnych pomiarów wiatrów na Jowiszu wiejących z prędkościami od 60 do 428 km/s.

Paradoksalnie dokładność teleskopu stworzyła pewne specyficzne wyzwania. „Jedna z największych trudności dotyczyła nawigacji na dysku planety. Chodzi o dokładne określenie, na który punkt patrzymy. Wynikało to z niewiarygodnie wysokiej rozdzielczości VLT” – tłumaczy planetolog.

„Mierzyliśmy prędkość wiatru z dokładnością do kilku metrów na sekundę, podczas gdy Jowisz na równiku obraca się z prędkością ponad 10 kilometrów na sekundę. Co więcej, ponieważ ma budowę gazową, a nie skalistą, prędkość obrotu się zmienia, m.in. zależnie od szerokości geograficznej” – podkreśla specjalista.

Swoje wyniki badacze odnieśli do wcześniejszych danych zgromadzonych innymi metodami, głównie z pomocą instrumentów działających w kosmosie. 

Dalsze obserwacje nową techniką pozwolą na analizę, jak wiatry na Jowiszu zmieniają się z czasem, i pomogą w stworzeniu modelu globalnej cyrkulacji atmosferycznej planety.

Planetolodzy zamierzają też w podobny sposób przyjrzeć się innym gazowym olbrzymom Układu Słonecznego, w pierwszej kolejności – Saturnowi.

Jak powstają gwiazdy?

.„Kluczowe w procesie narodzin gwiazdy są mgławice. Jest to obłok pyłu i gazu, w którym dochodzi do formowania się gwiazd. We wczesnych fazach gaz pozostaje praktycznie niewzbudzony i zauważalny jedynie w podczerwieni. 

Gwiazdy dzięki kolapsowi grawitacyjnemu narodziły się z materii i powoli ją rozdmuchują, emitując specyficzną formę wiatru. Tracą materię, która odsuwa od nich gaz” – pisze Piotr KOŁACZEK-SZYMAŃSKI, Członek Polskiego Towarzystwa Astronomicznego i asystent naukowy Instytutu Astronomicznego UWr.

„Nie wszystkie gwiazdy zbudowane są tak samo. Mała gwiazda, posiadająca masę mniejszą niż połowa masy Słońca, jest w pełni konwektywna. Znacznie przedłuża to jej życie, ponieważ dostarcza ona sobie nowego paliwa w postaci wodoru. W gwiazdach masywniejszych niż półtorej masy Słońca tendencje się odwracają. Ilość energii generowanej w jądrze jest tak duża, że nawet promieniowanie nie daje rady z jej wyprowadzaniem. Wówczas to jądro jest konwektywne, a otoczka jest promienista” – wyjaśnia astronom.

„W naszej galaktyce mamy ogromną liczbę gwiazd. Jeśli posortujemy je od lewej do prawej według koloru, który świadczy o temperaturze, a więc po lewej gwiazdy niebieskie (gorące), po prawej czerwone (chłodne), a także od góry do dołu według mocy promieniowania, czyli jasności, otrzymamy diagram Hertzsprunga-Russela. Gwiazdy tak posortowane ułożą się w linię, którą nazywamy ciągiem głównym. Wszystkie one osiągnęły etap «spalania» wodoru” – tłumaczy Piotr Kołaczek-Szymański.

PAP/ Marek Matacz/ Wszystko co Najważniejsze/ LW

Materiał chroniony prawem autorskim. Dalsze rozpowszechnianie wyłącznie za zgodą wydawcy. 30 grudnia 2023